Notas de aplicación
Single-Molecule Fluorescence Imaging on the Cell Membrane
Single-Molecule Fluorescence Imaging on the Cell Membrane Using a Super High Numerical Aperture (NA) Objective Lens
Introduction
Recent advances in cell preparation and microscope optical systems have enabled imaging of single biomolecules in a live cell. Molecular dynamics, such as the binding of a physiologically active ligand to a cell, dimerization of signal molecules, and the formation of a molecular complex, can be visualized at the single molecule level in live a cell using objective lenses with a super high numerical aperture. In this study, researchers used an Olympus super high NA objective lens for fluorescence imaging of intermolecular interactions in ion channels on the cell membrane at the single molecule level.
Super high NA objective lens TIRF application
Fluorescent-protein (FP) tagged ion channel subunits are expressed in Xenopus oocytes and observed at the single molecule level by TIRF microscopy (Figure 1, left). Stochastic bleaching events of individual FPs can be observed as ‘bleaching steps’ (Figure 1, right). The number of subunits in a single ion channel complex can be determined by counting the bleaching steps from individual fluorescent spots.
Figure 1. A schematic overview of the subunit counting by single molecule photobleaching. The photobleaching steps are represented by the green arrows.
Figure 2. Images of the fluorescent proteins Kv4.2-mCherry (left) and mEGFP-DPP10 (middle) expressed in Xenopus oocyte at the single molecule level under TIRF microscopy.
Images of the fluorescent proteins Kv4.2-mCherry Figure 2, left) and mEGFP-DPP10 (Figure 2, middle) expressed in a Xenopus oocyte were observed at the single molecule level using TIRF microscopy and super high NA objective lenses. Each red spot represents a single Kv4.2 channel (tetramer). Some of the green spots overlap with the red spots (white arrowheads in Figure 2, right) indicating that Kv4.2 and DPP10 form a complex. By counting bleaching events of mEGFP from a single fluorescent spot, the number of subunits in the complex can be counted. 1 In the Figure 2 graph, four bleaching events (green arrows) were observed from a Kv4.2-mCherry/mEGFP-DPP10 spot, suggesting four DPP10 subunits were included in the complex.
1 Ulbrich, Maximilian H., and Ehud Y. Isacoff. “Subunit counting in membrane-bound proteins.” Nature methods 4, no. 4 (2007): 319–321
Movie of Kv4.2-mCherry and mEGFP-DPP10
Imaging System;
Microscope: Research Inverted Microscope IX71
Objective: Apo 100XOHR (100X, N.A.1.65)
Ex: 488nm (Solid laser, Spectra-Physics) , 588nm (Solid laser, Coherent)
CCD camera: iXon3 EMCCD camera (Andor)
Coverslips: High refractive index coverslip (n = 1.78)
Image data courtesy of;
Masahiro Kitazawa, Ph.D., Yoshihiro Kubo, M.D.,Ph.D., Koichi Nakajo*, Ph.D.
Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences
*Present address: Department of Physiology, Osaka Medical College
Reference;
J Biol Chem. 2015 Sep 11; 290(37):22724-33. doi: 10.1074/jbc.M115.646794.
J Biol Chem. 2014 Jun 20;289(25):17597-609. doi: 10.1074/jbc.M114.563452.
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18862-7. doi: 10.1073/pnas.1010354107.
Conclusion
A high numerical aperture objective lens designed only for evanescent illumination can produce remarkably high contrast images even with weak fluorescent light because of the efficient formation of an evanescent wave field with a shallow penetration depth. While this type of observation requires the quantitative measurement of minute changes in fluorescence intensity due to fluorescence loss at the single molecule level, observation using a super high NA objective lens with special immersion oil and coverslips facilitates images of intermolecular interactions in ion channels in Xenopus oocyte membranes. Since these images have a high signal-to-noise ratio, changes in fluorescence intensity can be quantitatively measured.
Productos usados para esta aplicación
Sistema microscópico para procesamiento TIRF
IXplore TIRF
Dedicado a experimentos que tratan la dinámica de membranas, la detección de moléculas individuales y la colocalización, el sistema microscópico IXplore TIRF facilita un procesamiento de imágenes multicolor simultáneo de fluorescencia de reflexión interna total (TIRF) hasta con cuatro colores y alta estabilidad. El sistema cellTIRF proporciona un control motorizado, estable e individual del ángulo del láser; esto favorece la penetración regular de onda evanescente en imágenes de alto contraste y bajo ruido. Nuestros objetivos TIRF ofrecen una óptima relación entre señal y ruido, una alta apertura numérica, y collares de corrección para distintos espesores y temperaturas de cubreobjetos de vidrio.
- Colocalización exacta de hasta cuatro indicadores gracias al control de profundidad de penetración individual
- Benefíciese de nuestro objetivo TIRF que ofrece la apertura numérica más alta del mundo: 1.7*
- Configuración intuitiva de experimentos complejos con el Administrador Gráfico de Experimentos (GEM), el sistema cellFRAP y el controlador U-RTCE
* Hasta el 25 de julio de 2017, según los estudios efectuados por Olympus.
Objetivos de alta resolución TIRF/HR para superresolución/TIRF
APON-TIRF/UAPON-TIRF/UPLAPO-HR
Contando con los más altos valores de apertura numérica, los objetivos apocromáticos están optimizados para la TIRF de alto contraste y el procesamiento de imágenes de superresolución. Logre una extensa planitud con la alta apertura numérica (A. N.) de los objetivos UPLAPO-HR, y active un procesamiento de imágenes de superresolución en tiempo real para las células vivas y microorganismos.
- Gran apertura numérica que permite crear un campo de onda evanescente para imágenes TIRF de alto contraste o superresolución
- Serie HR que cubre los primeros* objetivos de Plan Apochromat del mundo en ofrecer una apertura numérica de 1,5 para lograr una extensa planitud
* Hasta noviembre del 2018, según los estudios realizados por Olympus.