Note d’application
Observation 3D de foie de souris clarifié à l’aide du microscope FLUOVIEW FV3000
Observation tridimensionnelle du foie en haute résolution
L’observation 3D d’échantillons de tissus épais nécessite généralement l’utilisation d’un microscope à excitation à deux photons en raison de l’augmentation de l’absorption et de la diffusion de la lumière qui se produit lors de l’imagerie en profondeur dans l’échantillon de tissu. Bien que le foie soit généralement un tissu à forte diffusion, l’utilisation de méthodes de clarification associées à des composants optiques appropriés peut permettre l’observation 3D des tissus épais au moyen du microscope confocal FV3000. Dans cette expérience, l’objectif à immersion dans l’huile de silicone x30 d’Olympus avec une ouverture numérique (ON) de 1,05 et une distance de travail (DT) de 0,8 mm a permis une observation 3D en haute résolution de la structure de l’arbre biliaire d’échantillons de foie de souris clarifiés.
Résumé de l’expérience
Clarification optique d’échantillons de tissus de foie de souris
Tissu de foie prélevé sur une souris
.
Le tissu est coloré pour la fluorescence par immunocoloration
.
Le tissu hépatique est clarifié à l’aide de SeeDB
D’après : K. Kamimoto, K. Kaneko, CY. Kok, H. Okada, A. Miyajima et T. Itoh, « Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling », Elife, 19 juillet 2016 ;5, pii : e15034, doi : 10.7554/eLife.15034.
Protocole expérimental de visualisation d’un réseau biliaire complexe en 3D. Après le prélèvement, les tissus biliaires sont soumis à une immunocoloration afin de visualiser un réseau biliaire complexe en trois dimensions. Les échantillons immunocolorés sont ensuite clarifiés à l’aide de SeeDB1).
1) Référence : Ke MT, S. Fujimoto et T. Imai, « SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction », Nat Neurosci, 16 août 2013 ; (8) : 1154–61, doi : 10.1038/nn.3447, Epub 23 juin 2013, PMID : 23792946
Observation tridimensionnelle des structures de l’arbre biliaire d’un foie de souris présentant des lésions avec un objectif x20 (UPLSAPO20X [ON : 0,75, DT : 0,6 mm])
Observation tridimensionnelle des structures de l’arbre biliaire d’un foie de souris avec un objectif x30 (UPLSAO30XS [ON : 1,05, DT : 0,8 mm])
Souris témoin
Souris Klf5-LKO
Vidéo : Structure de l’arbre biliaire de la souris témoin
Commentaire du Dr Okada : Visualisation tridimensionnelle et analyse structurelle fine de structures biliaires complexes
Dr. Hajime Okada
Commentaire du Dr Itoh : Imagerie tridimensionnelle de foies clarifiés2)
Dr Tohru Itoh
Professeur associé du projet
Jusqu’à présent, la recherche médicale et biochimique sur le foie s’appuyait principalement sur des méthodes d’observation 2D conventionnelles utilisant des sections de tissus au lieu d’organes intacts entiers. Toutefois, avec ces méthodes, il est difficile de détecter et de comprendre les « vraies couleurs » du foie dans les conditions physiologiques et diverses pathologies hépatiques.
Notre groupe de recherche a mis au point une nouvelle technologie de visualisation pour colorer et clarifier les tissus hépatiques, qui a permis de réaliser avec succès l’observation 3D de la structure biliaire de foies de souris intacts pour la première fois. Cette combinaison de technologies de clarification et de coloration nous a permis de détecter des changements dynamiques de la structure biliaire (remodelage biliaire) et d’effectuer des recherches sur ses mécanismes de régulation et ses fonctions physiologiques. Au cours des expériences présentées ci-dessus, nous avons réussi à établir un système expérimental permettant une visualisation efficace de la structure biliaire en 3D à l’aide du réactif de clarification SeeDB et d’un microscope confocal. Certains des mécanismes moléculaires de remodelage biliaire ont été clarifiés grâce à l’utilisation d’un microscope FV3000.
Avec les techniques ici présentées, un microscope confocal est utile pour l’analyse 3D des changements dynamiques des différents tissus et cellules du foie, y compris la structure biliaire. Nous pensons que notre nouvelle technologie de visualisation peut contribuer au perfectionnement de diagnostics et de traitements des pathologies hépatiques ainsi que de la médecine régénérative, grâce à une meilleure compréhension du processus de développement et de régénération du point de vue du remodelage tissulaire et des interactions intercellulaires.
2) Références :
H. Okada, M. Yamada, K. Kamimoto, CY. Kok, K. Kaneko, M. Ema, A. Miyajima et T. Itoh, « The transcription factor Klf5 is essential for intrahepatic biliary epithelial tissue remodeling after cholestatic liver injury », J Biol Chem., 27 avril 2018 ;293(17):6214-6229, doi : 10.1074/jbc. RA118.002372, Epub 9 mars 2018.
K. Kamimoto, K. Kaneko, CY. Kok, H. Okada, A. Miyajima et T. Itoh, « Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling », Elife, 19 juillet 2016 ;5, pii : e15034, doi : 10.7554/eLife.15034.
K. Kaneko, K. Kamimoto, A. Miyajima et T. Itoh, « Adaptive remodeling of the biliary architecture underlies liver homeostasis », Hepatology, juin 2015 ;61(6):2056-66, doi : 10.1002/hep.27685, Epub 22 avril 2015.
L’apport du microscope confocal FV3000 pour notre expérience
Le système intégralement spectral permet une sensibilité élevée
Les objectifs à immersion dans du silicone pour l’imagerie de cellules vivantes assurent une observation haute résolution en profondeur
Remerciements
Cette note d’application a été rédigée avec l’aide des chercheurs suivants :
Dr Hajime Okada, Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics
Dr Tohru Itoh, Project Associate Professor, Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, University of Tokyo
Produits utilisés pour cette application
FV4000
Microscope confocal à balayage laser
- Étendue dynamique révolutionnaire pour l’imagerie, de l’échelle macro jusqu’aux structures subcellulaires
- Possibilité de multiplexer jusqu’à six canaux simultanément avec la technologie TruSpectral
- Scanners à haute résolution et à grande vitesse repensés pour l’imagerie des cellules fixées et vivantes
- Profondeur et photosensibilité améliorées grâce à des capacités pionnières dans le proche infrarouge et à des composants optiques réputés
- Tranquillité d’esprit grâce au détecteur SilVIR fiable et reproductible
- Dix lignes laser uniques dans le secteur * avec une plage spectrale plus large de 405 à 785 nm
* En date d’octobre 2023.
UPLSAPO-S/UPLSAPO-W
Objectifs superapochromatiques
Ces objectifs superapochromatiques compensent à la fois les aberrations sphériques et chromatiques et possèdent un facteur de transmission élevé de la région du visible jusqu’à la région du proche infrarouge. Utilisés avec de l’huile de silicone ou des milieux d’immersion aqueux, dont les indices de réfraction sont proches de ceux des cellules vivantes, ils produisent une imagerie en haute résolution des couches profondes des tissus vivants.
- Compensation des aberrations sphériques et chromatiques et facteur de transmission élevé de la région du visible jusqu’à la région du proche infrarouge
- L’huile de silicone et les milieux d’immersion aqueux permettent de réaliser de l’imagerie en haute résolution des couches profondes de tissus vivants et de réduire les aberrations sphériques, car leurs indices de réfraction sont très proches de ceux des cellules vivantes.